请问tan tan x,arc tan(tan x),tan(arc tan x)都是怎么算出来的? 请问tan tan x,arc tan(tan x),tan(arc tan x)都是怎么算出来的呀? 详细步骤是怎样的? 以及为什么 显示全部 关注者 15 被浏览 对于单词sine, cosine, tangent, cotangent, secant, cosecant的由来,这里不讨论,这里讨论的是为什么这些三角函数会有如此中文名称。 首先,先看诱导公式五 \sin\left (\frac {\pi} {2}-x\right)=\cos x\\ \tan\left (\frac {\pi} {2}-x\right)=\cot x\\ \sec\left (\frac {\pi} {2}-x\right)=\csc x\\ 然后再重新叙述一遍初中时学过的余角的定义. 若正切值大于1,可以先取倒数算出tan (π/2-y),之后按照上述方法求出对应角度,最后记得变换回原角度即可。 上述是我能想到的相对最简便的手动估计反正切函数的方法。 知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业、友善的社区氛围、独特的产品机制以及结构化和易获得的优质内容,聚集了中文互联网科技、商业、影视. 但是由于∠A=90°,∠B就永远≠90°,只能说越来越接近,而随着x越来越大,这个tan值就会越来越大 我们来想象一下这个极限的情况 看一眼俄罗斯wiki上的一个说明吧: В западной литературе тангенс, котангенс и косеканс обозначаются {\displaystyle \tan x,\cot x,\csc x} Тригонометрические функции 发布于 2016-10-03 13:44 知乎用户 6 人赞同了该回答
为什么计算器上的tan-1次方和实际上1/tan结果不一样? 如图,具体来说是编程语言理解的问题吗 [图片] [图片] [图片] [图片] 还有sin (arctanx),tan (arcsinx), arcsin (tanx),arctan (sinx)。 十年缺项日经题天天出现,勿随意代值。 少用局部等价无穷小断章取义,哎呦喂。 泰勒公式天下第一要保证精确度适当唉。 重要极限千篇一律取对数LNX。 。 否则所有1^∞型都得1就太**无聊了。 sin是 正弦 sine的简写(也没简化多少),读作 [sain]; cos是 余弦 cosine的简写,读作 [ˈkəʊsaɪn]; tan是 正切 (实际是切线)tangent的简写,读作 [ˈtændʒənt];(很多中学老师读作“滩金替”) cot是 余切 cotangent的简写,读作 [kəʊ'tændʒənt]。 注意co-前缀表示“相对”的意思,所以有“正”的,就有. “tan mom” patricia krentcil lost her top for a shocking frolic on the jersey shore, and radaronline.com has the pictures for you. Available in multiple sizes and formats to fit your needs. Taylor series for $\tan^ {2} (x)$ ask question asked 7 years ago modified 7 years ago
And if you multiply the tangent function by itself, you're squaring it. If $\theta$ is exactly $90^\circ$, then $\tan \theta$ is undefined because of division by zero. If $\theta$ tends to $90^\circ$, namely $\theta -90^\circ$ is (non-zero) infinitesimal, then $\tan\theta=\infty$. You said: as $\frac {1} {0}$ could be both positive and negative infinity This is correct only when you clearly understand its meaning. $\frac {1} {0}$ is not valid as an arithmetic. How do i find the solutions to the equation $$\\tan x= x$$ upto any number of decimals Of course, there is the graphical method but it just helps in finding the approximate value. However, you can only take a couple derivatives of tan (x) before it becomes unbearable to calculate Is there a relatively easy way to find the maclaurin polynomial of tan (x)?
An easy, mostly graphical proof The reason you get a division by zero in the argument of arctan is that $\displaystyle\lim_ {\varphi\to\frac\pi2}\tan\varphi=\pm\infty\approx\tfrac10$ 1 use tan (a+b) formula and remember tan (ix) = i tanhx use that in your formula and then simplify as you would normal complex numbers if you need a detailed answer let me know cheers Recall that cosine is an even and sine an odd function It follows from the basic properties of real numbers that the quotients $\sin x / \cos x$ and $\cos x / \sin x$ are odd.
OPEN